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ABSTRACT
Intensive use of chlorinated pesticides from the 1960s to the 1990s has resulted in a diffuse contamination
of soils and surface waters in the banana-producing areas of the French West Indies. The purpose of this
research was, for the first time, to examine the degradation of two of these persistent pollutants –
chlordecone (CLD) and beta-hexachlorocyclohexane (b-HCH) in 1 mg L¡1 synthetic aqueous solutions by
means of photolysis, (photo-) Fenton oxidation and ozonation processes. Fenton oxidation is not efficient
for CLD and yields less than 15% reduction of b-HCH concentration in 5 h. Conversely, both molecules can
be quantitatively converted under UV-Vis irradiation reaching 100% of degradation in 5 h, while
combination with hydrogen peroxide and ferrous iron does not show any significant improvement except
in high wavelength range (>280 nm). Ozonation exhibits comparable but lower degradation rates than
UV processes. Preliminary identification of degradation products indicated that hydrochlordecone was
formed during photo-Fenton oxidation of CLD, while for b-HCH the major product peak exhibited C3H3Cl2
as most abundant fragment.
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Introduction

Banana and sugarcane have been the main agricultural prod-
ucts of the French Antilles (Guadeloupe and Martinique) since
the 1960s. To prevent crop damages from the banana weevil,
chlorinated pesticides, such as chlordecone (CLD, C10Cl10O,
CAS-number: 143-50-0), b-hexachlorocyclohexane (b-HCH,
C6Cl6H6, CAS-number: 319-85-7) and dieldrine were exten-
sively used until the beginning of the 1990s, resulting in the
contamination of both the soil and the surface waters.[1,2] It
was not until 2009, when they were listed as persistent organic
pollutants under the Stockholm Convention,[3] that the produc-
tion and agricultural use of the first two pesticides was prohib-
ited worldwide.[3]

Chlordecone has a low solubility in water (2.7 mg L¡1 at
25�C[4]) and its vapor tension is less than 3 £ 10¡7 mmHg at
25�C.[1] It has a strong affinity for lipids, accumulates in the
food chain[5,6] and is known for its endocrine-disrupting char-
acter[7] and carcinogenic potential.[8,10] Used since 1972, it was
banned in 1993 in the French West Indies. Nonetheless, pollu-
tion surveys conducted in 2001 by the French Department of
Health still revealed the presence of chlordecone in soils, rivers,
springs and drinking water of Antilles, as well as in food crop
products such as root vegetables.[1] More recent studies in the

same area measured concentrations of chlordecone between 0.1
and 37.4 mg kg¡1 in soils.[4]

HCH was spread on the form of technical HCH consisting
of eight isomers whose water solubility varies between 5 (for
b-HCH) and 20 mg L¡1 and vapor tension between 3.54 £
10¡5 (for b-HCH) and 0.003 Pa at 20�C.[11] Mainly four of
them are found in technical grade products, b-HCH (account-
ing for 5 to 12% of technical HCH) being considered as the
most recalcitrant.[12] Available toxicity data for this isomer
are limited, especially concerning human health, because expo-
sure mainly occurs with HCH mixture or pesticidally active lin-
dane (g-HCH). Neurotoxic effects were reported from animal
studies and it is classified as possibly human carcinogenic.[11]

Technical HCH was mainly used in the 1960s and 1970s in the
Antilles (before CLD was introduced), with amount as high as
350 kg ha¡1 year¡1.[12] Such extensive application should
explain why b-HCH is still the pesticide the most frequently
detected in surface waters of Martinique after CLD.[13]

Thus, there is growing political and social pressure to find reme-
diation solutions for CLD and b-HCHproblem in the FrenchWest
Indies. Physical treatments applied for the removal of pesticides
from contaminated wastewater, such as coagulation, flocculation,
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membrane separation or adsorption on activated carbon, only
operate a transfer of the pollutants which still have to be destroyed.
Biological solutions are under development,[14,15] but they are lim-
ited by slow degradation kinetics or use of anoxic conditions. On
the other hand, advanced oxidation processes like (photo-)Fenton
oxidation or ozonation have been applied for the degradation of
several classes of pesticides and refractory compounds such as thia-
methoxam,[16] lindane,[17–20] parathion and dichlorvos,[18] endo-
sulfan,[19] linuron,[21] bromoxynil and trifluralin,[22] monuron,[23]

2,4-dichlorofenoxyacetic acid.[24] Except one patent for CLD,[25]

only very recent works investigated chemical processes for the
remediation of CLD[26] and b-HCH.[27,29] The purpose of this
work is, for the first time, to examine the degradation of CLD and
b-HCH in synthetic aqueous solutions by means of photolysis,
(photo-)Fenton oxidation and ozonation.

Materials and methods

Chemicals

CLD and b-HCH were supplied by Sigma-Aldrich with a purity
�99.0%. 700 mL of pesticide solutions with an initial concen-
tration of 1 mg L¡1 (corresponding to 2.0 mmol L¡1 for CLD
and 3.4 mmol L¡1 for b-HCH) were treated by photo-mediated
processes. For ozonation experiments only 250 mL were used.
All the samples were prepared by diluting a stock solution
(0.5 g L¡1 of pesticide in acetone) into demineralized water.
For Fenton and photo-Fenton experiments they were then
acidified to pH 2.6 using 10% H2SO4 (95–97%, Sigma Aldrich).

Hydrogen peroxide (Ph Eur, 30% w/w solution, Sigma-
Aldrich) and Fe2SO4.7H2O (99.5%, Sigma-Aldrich) were
applied as Fenton’s reagents. Methanol (99%, Scharlau Chemie)
was used to quench homogeneous Fenton reaction by scaveng-
ing hydroxyl radicals.[30]

Experimental setups

Photolysis and (photo-)Fenton experiments were conducted in a
1 L stirred Pyrex reactor, equipped with a jacket to maintain the
temperature of the solution at 30�C. It included a medium-pres-
sure mercury vapor lamp (MP Hg, 450 W Hanovia PC451.050
lamp, arc length 4.8 cm) or a low-pressure mercury vapor lamp
(LP Hg, 10 W Heraeus GPH212T5L/4 lamp) placed in either a
jacketed quartz or borosilicate glass immersion well. The solution
was agitated by a magnetic stirrer rotated at 350 rpm and by gentle
bubbling of air. It was checked from blank experiments that no
stripping or adsorption of the CLD or b-HCH occurred during the
reaction time (5 h). 7 mL aliquots were sampled at selected time
intervals, treated with methanol (using 1:1 w/w mixture of sample
andMeOH) and centrifuged when Fenton’s reagent was present.

The stoichiometric amount of H2O2 required for the miner-
alization of the pesticides was calculated based on the following
equations, for (1) CLD and (2) b-HCH:

C10Cl10OC 14H2O2 D 10CO2 C 9H2O C 10HCl (1)

C6Cl6H6 C 12H2O2 D 6CO2 C 12H2OC 6HCl (2)

A H2O2 dosage equivalent to 20 times the stoichiometric
amount and a molar ratio of H2O2 to Fe2C equal to 2 were used

for the Fenton experiments. It corresponded to the following
concentrations of the Fenton’s reagent: 0.6 mmol L¡1 of H2O2

and 0.3 mmol L¡1 of Fe(II) for CLD; 0.8 mmol L¡1 of H2O2

and 0.4 mmol L¡1 of Fe(II) for b-HCH. The Fenton reaction
was initiated by the addition of H2O2.

Ozonation was performed in a 0.5 L cylindrical glass reac-
tor and the solution was agitated by bubbling of ozone. For
all the experiments the initial pH of the solution was 5.3.
Ozone was produced from pure oxygen by a WEDECO
4-HC Ozone Generator. The gas mixture containing 48 g
Nm¡3 of ozone was continuously bubbled into the solution
through a porous distributor plate at a flow rate of 30 L h¡1.
Blank runs were also performed with nitrogen only, to check
for the absence of any pollutant stripping or adsorption on
reactor internals. Withdrawn samples were not treated before
analyses.

Analytical methods

A LC-MS/MS with external standardization was used to follow
the evolution of CLD and b-HCH concentrations.

LC-MS/MS analysis

Analysis conditions: (Treated) reaction samples (50 and 80 mL
for CLD and b-HCH, respectively) were directly injected in an
Agilent 1100 liquid chromatograph coupled to a triple quadru-
pole-linear ion trap mass spectrometer (Qtrap 2000, ABSciex).
The separation column was a C18 Waters Xbridge (100 mm £
3.0 mm I.D. and 3.5 mm particle size) thermostated at 50�C.
Mobile phases were (A) ultrapure water, with 10 mmol L¡1 of
ammonium formate and (B) HPLC grade acetonitrile in the
case of CLD samples; (A) ultrapure water and (B) HPLC grade
acetonitrile in the case of b-HCH samples. They were delivered
in 40/60 v/v isocratic mode of A and B, at a total flow rate of
0.5 mL min¡1. The mass spectrometer was used in MS/MS,
negative APCI, multiple reaction monitoring (MRM) mode
and the following mass transitions (m/z) were followed:
506.85-427 (CLD) and 321.8-195 (b-HCH). Declustering
potential (DP) and collision energy (CE) were optimized to the
following values: DP D ¡80 and CE D ¡28 for CLD, DP
D ¡40 and CE D ¡18 for b-HCH. The data were recorded and
treated with Analyst 1.6.2 software (AB Sciex).

Calibration method: An external standardization procedure
was applied for LC-MS/MS analysis, using for each experiment
a different calibration curve established in the 0.05–0.5 ppm
range. In the case of (photo-)Fenton oxidation, a specific proce-
dure was followed for its construction, so as to minimize varia-
tions in response coefficient ascribed to the presence of
dissolved iron and quenching agent: the 0.5 ppm standard was
prepared by mixing the pollutant solution containing ferrous
iron with methanol (1:1 w/w), as for the oxidation samples.
Then, a solution consisting in a 1:1 (w/w) mixture of acidic fer-
rous iron solution (same as previously, but without pollutant)
and methanol was used to obtain the other standards by succes-
sive dilution of the first one, thereby keeping ferrous iron and
MeOH concentrations unchanged. The standards were finally
centrifuged as treated samples. Quantification limit was
0.05 ppm for CLD and b-HCH.
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Results and discussion

Comparison of the different AOPs for CLD degradation

Photolysis (using first a large UV-Vis spectrum), (photo-)Fen-
ton oxidation and ozonation were investigated for the removal
of CLD, and their results are shown in Fig. 1. Error bars indi-
cate the deviation from the mean of triplicate experiments.

First, it should be noticed that although hydroxyl radicals
generated by AOPs are reported to be highly reactive and non-
selective, Fenton oxidation did not yield any significant conver-
sion of the contaminant in the investigated condition. As the
solution also contained a significant amount of acetone which
was used to help the pesticide dissolution into water
(cf. x 2.1), a complementary experiment was carried out with a
tenfold H2O2 dosage (while keeping the same H2O2/Fe ratio);
however the degradation of CLD remained negligible. Such low
reactivity might result from the high steric hindrance of the
molecule. On the other hand, ozone was able to achieve 70% of
pesticide removal within 2 h. In this case, both molecular and
radical mechanisms should be involved, the latter being favored
by high pH values.[31] An inhibition of radical process could be
then suspected.

CLD could be readily degraded by direct photolysis, to
more than 95% in 3 h. Addition of the Fenton’s reagent
resulted in no appreciable improvement of the removal rate,
and thus hydroxyl radical mechanism that should be
enhanced under UV-Vis irradiation (through H2O2 photoly-
sis and ferrous iron regeneration) did not seem to play any
noticeable role either.

To further investigate photo-assisted processes, the applied
wavelength range was varied by using the MP Hg lamp with a
glass immersion well and a LP Hg lamp (with quartz lamp
holder). According to the supplier, the MP Hg lamp emitted
40–48% of its energy is in the ultraviolet portion of the spec-
trum and 40–43% in the visible range. The glass holder should
cut most of the radiation below 280 nm, about 50% of the emis-
sion at 310 nm, and showed full transmittance above 355 nm.
On the other hand, the LP Hg lamp mainly exhibited a mono-
chromatic emission at 254 nm. Results are shown in Fig. 2 for
both photolysis and photo-Fenton oxidation.

For both the processes, the removal yield of CLD ranged in
the order: MP Hg lamp C quartz lamp holder > LP Hg lamp
C quartz lamp holder > MP Hg lamp C borosilicate lamp
holder. As photolysis mechanism was shown as the dominant
process, this could be explained by the absorbance spectrum of

the molecule which exhibited maxima at 210 and 320 nm and
differences in lamp irradiation intensity in this wavelength
range. Cutting (first) absorption maximum of CLD at 210 nm
strongly reduced the molecule photodegradation. On the other
hand, the higher rate observed at λ D 254 nm than at
λ > 280 nm (while another absorption peak is observed at 320
nm) might be due to the presence of acetone, which was
reported to act as photo-sensitizer.[32] Moreover, when the glass
lamp holder dramatically hindered photolysis, effect of Fen-
ton’s reagent addition more clearly stood out, indicating that a
radical-mediated mechanism in fact contributed, but to a much
lower extent.

Kitchens[25] investigated the removal of CLD by UV, UV/
O3, and UV/H2 in basic aqueous solution and (alkalinized)
methanol using a 30W UV lamp irradiating at 254 nm. In
aqueous NaOH solution, UV/H2 was found to be the most effi-
cient treatment with 84% conversion of the molecule within
120 min vs. 39% and 21% for UV and UV/O3, respectively.
This latter result is much lower than that observed for ozona-
tion in the present study, without irradiation and at slightly
acidic pH. This is in line with a weak contribution of hydroxyl
radicals in the investigated pH. With the MP Hg lamp, similar
performance as the proposed UV/H2 process could be achieved,
but this process might be more expensive and dangerous than
(photo-) Fenton oxidation.

Comparison of the different AOPs for b-HCH degradation

Figure 3 provides a comparison of the same AOPs as in Fig. 1,
but for the case of b-HCH. It also exhibits essentially the same
features: almost insignificant oxidation rate by Fenton’s reagent
and thus a photo-Fenton process mainly driven by the direct
photolysis of the molecule.

Figure 1. Degradation of CLD by photolysis, Fenton, photo-Fenton and ozonation
processes. [CLD]0 D 2 mmol L¡1, T D 30�C; 450 W MP Hg lamp and quartz lamp
holder for photo-assisted processes; [H2O2]0 D 0.6 mmol L¡1, [Fe(II)]0 D 0.3 mmol
L¡1 and pH0 D 2.6 for Fenton-based oxidation.

Figure 2. Effect of irradiation spectrum on the degradation of CLD by photo-
assisted processes. [CLD]0 D 2 mmol.L¡1, T D 30�C; photo-Fenton:[H2O2]0 D
0.6 mmol L¡1, [Fe(II)]0 D 0.3 mmol L¡1, pH0 D 2.6.

Figure 3. Degradation of b-HCH by photolysis, Fenton, UV/Fenton and ozonation
processes. [b-HCH]0 D 3.4 mmol L¡1, T D 30�C; 450 W MP Hg lamp and quartz
lamp holder for photo-assisted processes; [H2O2]0 D 0.8 mmol L¡1, [Fe(II)]0 D
0.4 mmol L¡1 and pH0 D 2.6 for Fenton-based oxidation.
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Effect of lamp irradiation was also investigated (Fig. 4) and
the most striking result was a still high elimination of b-HCH
by photo-Fenton oxidation under UVB-Vis.

To our knowledge, only scarce information related to the
advanced oxidation of this pesticide has been reported. The
work of Usman et al. (2014) performed on contaminated soils
indicated a much lower degradation of b-HCH by Fenton’s
reagent with respect to g-HCH (25% vs. 90%). On the other
hand, Ormad et al.[27] studied the degradation of a group of
pesticides including b-HCH in very diluted conditions (0.5 mg
L¡1) by ozonation, O3/H2O2, O3/TiO2 and O3/H2O2/TiO2 pro-
cesses. The degradation of b-HCH was only possible when the
process O3/H2O/TiO2 was used with an ozone flow of 3 mgL¡1,
for an O3/pollutant ratio close to one. In these conditions a deg-
radation of the b-HCH of 10% was achieved.

Preliminary identification of degradation products indicated
that hydrochlordecone was formed during photo-Fenton oxi-
dation of CLD, while for b-HCH the major product peak
exhibited C3H3Cl2 as most abundant fragment.

In order to compare the different processes studied for the
degradation of both pesticides, their kinetics constants were
calculated following a pseudo-first order model (Table 1).

As we can observe for the CLD the best process was the pho-
tolysis, followed by the photo-Fenton and the ozone, all with
the same order of magnitude, and the Fenton process was the
less effective with 2 orders of magnitude below. In the case of
b-HCH, the behavior was similar to CLD but the photolysis
and photo-Fenton processes have the same rate constants.

On the other hand, b-HCH was found less sensitive to UV
irradiation, its first-order photolysis rate constant being
2.10¡4 s¡1, much smaller than that of CLD (8.10¡4 s¡1).
b-HCH also showed a slightly lower reactivity towards ozone,
with about 50% conversion after 2 h (against 70% for CLD).

Finally, with the aim of comparing the efficiency of the pho-
tolytic processes a study of the electrical energy per order

(EE/O) was carried out. The EE/O was calculated by the
Eq. (3), proposed by Bolton and Cater.[33]

EE
O

D P£t

V£log C0
C

(3)

As we can see in Table 2, the most efficient process for CLD
degradation was the photolysis, with the lowest EE/O of all the
studied process. However, for the degradation of b-HCH the
lowest EE/O was obtained for the photo-Fenton process. This
behavior could be explained by the lowest sensibility to the UV
radiation observed in this study by the b-HCH.

Conclusions

In the investigated conditions, both chlordecone and beta-hex-
achlorocyclohexane exhibited a much lower reactivity towards
Fenton’s reagent (<10% conversion in 2 h) than ozone (>50%
conversion). Photolysis achieved almost complete removal of
both pesticides within 5 h when using a high pressure mercury
lamp, and a conversion of about 40% with a low power lamp at
254 nm. Preliminary identification of degradation products
indicated that hydrochlordecone was formed during photo-
Fenton oxidation of CLD, while for b-HCH the major product
peak exhibited C3H3Cl2 as most abundant fragment.
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